Insight into the role of chitosan in rapid recovery and re-stabilization of disintegrated aerobic granular sludge

J Environ Manage. 2024 Apr:356:120613. doi: 10.1016/j.jenvman.2024.120613. Epub 2024 Mar 27.

Abstract

The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 μm to 485.9 μm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 μm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.

Keywords: Aerobic granular sludge; Chitosan; Microbial community; Nutrient removal; Re-stabilization.

MeSH terms

  • Aerobiosis
  • Bioreactors
  • Chitosan*
  • Nitrogen / chemistry
  • Sewage* / chemistry
  • Waste Disposal, Fluid / methods

Substances

  • Sewage
  • Chitosan
  • Nitrogen