Synthesis and Characterization of 6-Ti-Substituted Polyoxomolybdate with High Catalytic Activity for Sulfide Oxidation

Inorg Chem. 2024 Apr 8;63(14):6268-6275. doi: 10.1021/acs.inorgchem.3c04628. Epub 2024 Mar 28.

Abstract

A 6-Ti-substituted polyoxometalate, (NH4)5Cs7Na3H2[Cs@(Ti2GeMo10O39)3]·34H2O (1), was synthesized by reacting (NH4)6Mo7O24·4H2O, GeO2, and TiOSO4 through the conventional aqueous method. Polyanion 1a is composed of three {Ti2GeMo10} segments linked by Ti-O-Ti linkages and shows a trefoil-shaped structure. Furthermore, one Cs+ cation is encapsulated in the cavity of 1a. Notably, it possesses the highest number of Ti centers among the reported polyoxomolybdates. In addition, serving as a high-efficiency heterogeneous catalyst, 1 enables the conversion of methyl phenyl sulfide within 20 min, yielding 96.4% of the corresponding sulfoxide with good recyclability.