Optical Limiting Response of Porous Carbon Dispersions

Nanomaterials (Basel). 2024 Mar 17;14(6):533. doi: 10.3390/nano14060533.

Abstract

With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface area (2.9 × 103 m2/g) using the nanosecond Z-scan technique. Compared to the traditional OL material C60, the porous carbon material shows an excellent broadband limiting effect, and the limiting thresholds correspond to 0.11 J/cm2 for 532 nm and 0.25 J/cm2 for 1064 nm pulses, respectively. The nonlinear scattering experiments showed that the OL behavior was mainly attributed to the nonlinear scattering effect, which is caused by the rapid growth and expansion of bubbles in the dispersion induced by laser irradiation, and the scattered light distribution is consistent with the results of Mie's scattering. These results suggest that porous carbon materials are expected to be applied to the field of laser protection in the future to further protect the human eye and precision optical instruments.

Keywords: nonlinear scattering; optical limiting; porous carbon; super large specific surface area.