A 3D-Printed Portable UV and Visible Photoreactor for Water Purification and Disinfection Experiments

Nanomaterials (Basel). 2024 Mar 15;14(6):525. doi: 10.3390/nano14060525.

Abstract

Water scarcity and contamination are urgent issues to be addressed. In this context, different materials, techniques, and devices are being developed to mitigate contemporary and forthcoming water constraints. Photocatalysis-based approaches are suitable strategies to address water contamination by degrading contaminants and eliminating microbes. Photoreactors are usually designed to perform photocatalysis in a scalable and standardised way. Few or none have been developed to combine these characteristics with portability, flexibility, and cost effectiveness. This study reports on designing and producing a portable (490 g), low-cost, and multifunctional photoreactor that includes adjustable radiation intensity and two types of wavelengths (UV-A and visible), including combined agitation in a compact mechanism produced through 3D printing technology. The mechanical, electrical, and optical subsystems were designed and assembled into a robust device. It is shown that it is possible to apply radiations that can reach 65 mW/cm2 and 110 mW/cm2 using the installed visible and UV LEDs and apply mechanical agitation up to 200 rpm, all under a ventilated system. Regarding functionality, the photoreactor proof of concept indicated the ability to degrade ~80% and 30% ciprofloxacin under UV and visible irradiation of TiO2 and Ag/TiO2 nanoparticles. The device also showed the ability to eliminate E. coli bacteria, recurring to radiation set-ups and nanoparticles. Therefore, the originally designed and constructed photoreactor concept was characterised and functionally validated as an exciting and flexible device for lab-scaled or outdoor experiments, assuring standardised and comparable results.

Keywords: 3D printing; ciprofloxacin; photocatalysis; portable photoreactor; water purification.