Enhanced Stability of Oral Vitamin C Delivery: A Novel Large-Scale Method for Liposomes Production and Encapsulation through Dynamic High-Pressure Microfluidization

Nanomaterials (Basel). 2024 Mar 14;14(6):516. doi: 10.3390/nano14060516.

Abstract

In recent years, nanocarriers have been widely used as an effective solution for oral administration of pharmaceuticals. However, there is still an urgent need to speed up their translation to clinical practice. Cost-effective and industrially scalable methodologies are still needed. Herein, the production of vitamin C-loaded liposomes for nutraceutical purposes has been investigated and optimized by adopting a High-Pressure Homogenizer. Initially, the impact of process parameters on particles size, distributions, and morphology was explored. The findings document that the pressure and cycle manipulation allow for control over liposome size and polydispersity, reaching a maximum encapsulation efficiency exceeding 80%. This significantly improves the storage stability of vitamin C, as demonstrated by monitoring its antioxidant activity. Furthermore, the in vitro simulation of gastrointestinal digestion shows that liposomes could protect the active substance from damage and control its release in the gastrointestinal fluid. Thus, the whole nanodelivery system can contribute to enhancing vitamin C bioavailability. In conclusion, the results indicate that this innovative approach to producing vitamin C liposomes holds promise for clinical translation and industrial scale-up. Indeed, by utilizing food-grade materials and straightforward equipment, it is possible to produce stable and functional liposomes suitable for health products.

Keywords: ascorbic acid; drug delivery system; high-pressure homogenizer; liposomes; nanoencapsulation; nanomaterial-based packages; oral supplements; scale-up process.