Enhancing Error Detection on Medical Knowledge Graphs via Intrinsic Label

Bioengineering (Basel). 2024 Feb 27;11(3):225. doi: 10.3390/bioengineering11030225.

Abstract

The construction of medical knowledge graphs (MKGs) is steadily progressing from manual to automatic methods, which inevitably introduce noise, which could impair the performance of downstream healthcare applications. Existing error detection approaches depend on the topological structure and external labels of entities in MKGs to improve their quality. Nevertheless, due to the cost of manual annotation and imperfect automatic algorithms, precise entity labels in MKGs cannot be readily obtained. To address these issues, we propose an approach named Enhancing error detection on Medical knowledge graphs via intrinsic labEL (EMKGEL). Considering the absence of hyper-view KG, we establish a hyper-view KG and a triplet-level KG for implicit label information and neighborhood information, respectively. Inspired by the success of graph attention networks (GATs), we introduce the hyper-view GAT to incorporate label messages and neighborhood information into representation learning. We leverage a confidence score that combines local and global trustworthiness to estimate the triplets. To validate the effectiveness of our approach, we conducted experiments on three publicly available MKGs, namely PharmKG-8k, DiseaseKG, and DiaKG. Compared with the baseline models, the Precision@K value improved by 0.7%, 6.1%, and 3.6%, respectively, on these datasets. Furthermore, our method empirically showed that it significantly outperformed the baseline on a general knowledge graph, Nell-995.

Keywords: confidence score; error detection; graph attention network; medical knowledge graph.