Analytical Characterization of Heterogeneities in mRNA-Lipid Nanoparticles Using Sucrose Density Gradient Ultracentrifugation

Anal Chem. 2024 Apr 9;96(14):5570-5579. doi: 10.1021/acs.analchem.4c00031. Epub 2024 Mar 26.

Abstract

Rational design and robust formulation processes are critical for optimal delivery of mRNA by lipid nanoparticles (LNPs). Varying degrees of heterogeneity in mRNA-LNPs can affect their biophysical and functional properties. Given the profound complexity of mRNA-LNPs, it is critical to develop comprehensive and orthogonal analytical techniques for a better understanding of these formulations. To this end, we developed a robust ultracentrifugation method for density-based separation of subpopulations of mRNA-LNPs. Four LNP formulations encapsulating human erythropoietin (hEPO) with varying functionalities were synthesized using two ionizable lipids, A and B, and two helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dierucoyl-sn-glycero-3-phosphoethanolamine (DEPE), along with cholesterol and DMG-PEG-2K. Upon ultracentrifugation on a sucrose gradient, a distinct pattern of "fractions" was observed across the gradient, from the less dense topmost fraction to the increasingly denser bottom fractions, which were harvested for comprehensive analyses. Parent LNPs, A-DOPE and B-DOPE, were resolved into three density-based fractions, each differing significantly in the hEPO expression following intravenous and intramuscular routes of administration. Parent B-DEPE LNPs resolved into two density-based fractions, with most of the payload and lipid content being attributed to the topmost fraction compared to the lower one, indicating some degree of heterogeneity, while parent A-DEPE LNPs showed remarkable homogeneity, as indicated by comparable in vivo potency, lipid numbers, and particle count among the three density-based fractions. This study is the first to demonstrate the application of density gradient-based ultracentrifugation (DGC) for a head-to-head comparison of heterogeneity as a function of biological performance and biophysical characteristics of parent mRNA-LNPs and their subpopulations.

MeSH terms

  • Humans
  • Lipids*
  • Liposomes
  • Nanoparticles* / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Small Interfering / genetics

Substances

  • Lipid Nanoparticles
  • RNA, Messenger
  • Lipids
  • Liposomes
  • RNA, Small Interfering