Three-Dimensional Visualization of Adsorption Distribution in a Single Crystalline Particle of a Metal-Organic Framework

J Am Chem Soc. 2024 Apr 3;146(13):9181-9190. doi: 10.1021/jacs.3c14778. Epub 2024 Mar 25.

Abstract

Many unique adsorption properties of metal-organic frameworks (MOFs) have been revealed by diffraction crystallography, visualizing their vacant and guest-loaded crystal structures at the molecular scale. However, it has been challenging to see the spatial distribution of the adsorption behaviors throughout a single MOF particle in a transient equilibrium state. Here, we report three-dimensional (3D) visualization of molecular adsorption behaviors in a single crystalline particle of a MOF by in situ X-ray absorption fine structure spectroscopy combined with computed tomography for the first time. The 3D maps of water-coordinated Co sites in a 100 μm-scale MOF-74-Co crystal were obtained with 1 μm spatial resolution under several water vapor pressures. Through the visualization of the water vapor adsorption process, 3D spectroimaging revealed the mechanism and spatial heterogeneity of guest adsorption inside a single particle of a crystalline MOF.