Innovative tarantula hair-inspired washing machine filters for enhanced microfiber capture

Sci Total Environ. 2024 May 20:926:171807. doi: 10.1016/j.scitotenv.2024.171807. Epub 2024 Mar 21.

Abstract

Aquatic environments are being polluted by microplastics primarily originating from the washing of synthetic textiles. Microfibers (MF), which are microplastics in synthetic fibers, are consistently introduced into the environment with each domestic laundry cycle. To address this issue, we developed a specialized MF capture "barbed filter" (BF) by transforming PET monofilaments of different diameters (0.4, 0.6, and 0.8 mm) into structures that closely resemble the characteristics of tarantula urticating hairs. BFs feature sharp barbs that effectively capture and retain microfibers of diverse lengths, surpassing the performance of conventional control filters. The BFs had a retention efficiency of 88-91 %, while the CFs had an efficiency of 79-86 %. Our findings revealed that the barbed filter significantly outperformed the conventional control filter in capturing microfibers due to its smaller pore size, shorter pore distance, and unique filter shape. This design not only enhances the surface area and friction, facilitating microfibril strong entrapment but also minimizes the probability of microfibril passage through the filter. This research offers a promising solution for reducing microfibril release from laundry and textile industrial wastewater. The implementation of BFs in real life has the potential to significantly reduce microplastic pollution and promote a cleaner and more sustainable environment.

Keywords: Laundry discharge; Microfiber-capturing barbed filter; Microplastic mitigation; Tarantula shape; Textile washing.