Ultrasonic backscattering model for Rayleigh waves in polycrystals with Born and independent scattering approximations

Ultrasonics. 2024 May:140:107297. doi: 10.1016/j.ultras.2024.107297. Epub 2024 Mar 14.

Abstract

This paper presents theoretical and numerical models for the backscattering of 2D Rayleigh waves in single-phase, untextured polycrystalline materials with statistically equiaxed grains. The theoretical model, based on our prior inclusion-induced Rayleigh wave scattering model and the independent scattering approximation, considers single scattering of Rayleigh-to-Rayleigh (R-R) waves. The numerical finite element model is established to accurately simulate the scattering problem and evaluate the theoretical model. Good quantitative agreement is observed between the theoretical model and the finite element results, especially for weakly scattering materials. The agreement decreases with the increase of the anisotropy index, owing to the reduced applicability of the Born approximation. However, the agreement remains generally good when weak multiple scattering is involved. In addition, the R-R backscattering behaviour of 2D Rayleigh waves is similar to the longitudinal-to-longitudinal and transverse-to-transverse backscattering of bulk waves, with the former exhibiting stronger scattering. These findings establish a foundation for using Rayleigh waves in the quantitative characterisation of polycrystalline materials.

Keywords: Backscattering; Born approximation; Finite element; Independent scattering; Polycrystals; Rayleigh waves.