Contextuality as a Precondition for Quantum Entanglement

Phys Rev Lett. 2024 Mar 8;132(10):100201. doi: 10.1103/PhysRevLett.132.100201.

Abstract

Quantum theory features several phenomena which can be considered as resources for information processing tasks. Some of these effects, such as entanglement, arise in a nonlocal scenario, where a quantum state is distributed between different parties. Other phenomena, such as contextuality, can be observed if quantum states are prepared and then subjected to sequences of measurements. We use robust remote state preparation to connect the nonlocal and sequential scenarios and provide an intimate connection between different resources: We prove that entanglement in a nonlocal scenario can arise only if there is preparation and measurement contextuality in the corresponding sequential scenario and that the absence of entanglement implies the absence of contextuality. As a direct consequence, our result allows us to translate any inequality for testing preparation and measurement contextuality into an entanglement test; in addition, entanglement witnesses can be used to design novel contextuality inequalities.