Self-Assembled Interlayer Enables High-Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20

Adv Mater. 2024 Mar 21:e2400342. doi: 10.1002/adma.202400342. Online ahead of print.

Abstract

Interfacial layers (ILs) are prerequisites to form the selective charge transport for high-performance organic photovoltaics (OPVs) but mostly result in considerable parasitic absorption loss. Trimming the ILs down to a mono-molecular level via the self-assembled monolayer is an effective strategy to mitigate parasitic absorption loss. However, such a strategy suffers from inferior electrical contact with low surface coverage on rough surfaces and poor producibility. To address these issues, here, the self-assembled interlayer (SAI) strategy is developed, which involves a thin layer of 2-6 nm to form a full coverage on the substrate via both covalent and van der Waals bonds by using a self-assembled molecule of 2-(9H-carbazol-9-yl) (2PACz). Via the facile spin coating without further rinsing and annealing process, it not only optimizes the electrical and optical properties of OPVs, which enables a world-record efficiency of 20.17% (19.79% certified) but also simplifies the tedious processing procedure. Moreover, the SAI strategy is especially useful in improving the absorbing selectivity for semi-transparent OPVs, which enables a record light utilization efficiency of 5.34%. This work provides an effective strategy of SAI to optimize the optical and electrical properties of OPVs for high-performance and solar window applications.

Keywords: high‐performance organic photovoltaic; light utilization efficiency; self‐assembled interlayer; self‐assembled monolayer; semi‐transparent organic photovoltaic.