Consistent seasonal flexibility of the gut and its regions across wild populations of a winter-quiescent fish

R Soc Open Sci. 2024 Mar 20;11(3):231975. doi: 10.1098/rsos.231975. eCollection 2024 Mar.

Abstract

Seasonality in north-temperate environments imposes drastic temperature and resource variations that shape the seasonal ecophysiology of resident organisms. A better understanding of an organism's capacity to flexibly respond to this drastic seasonal variation may reveal important mechanisms for tolerating or responding to environmental variation introduced by global change. In fishes, the digestive system is both the interface between resource and energy acquisition and one of the most expensive organ systems to maintain. However, little evidence describing the capacity for seasonal flexibility in the digestive tract of wild northern fishes exists. Here, we investigated phenotypic flexibility in the size of the gastrointestinal (GI) tract across three northern populations of a winter-dormant warm-water fish, pumpkinseed sunfish (Lepomis gibbosus). In all populations, pumpkinseed exhibited pronounced structural flexibility in the GI tract, aligned with winter and the timing of reproduction. The dry mass of the GI increased by 1.3- to nearly 2.5-fold in the early spring. The pyloric caeca demonstrated the greatest capacity for flexibility, increasing by up to 3.7-fold prior to reproduction. In all populations, minimum dry GI mass was consistently achieved during winter and mid-summer. This capacity for gut flexibility may represent a novel mechanism for facilitating rapid adaptive responses (e.g. metabolic plasticity) to future environmental change.

Keywords: Centrarchidae; aquatic ecosystems; ecophysiology; phenotypic flexibility; seasonality.

Associated data

  • figshare/10.6084/m9.figshare.c.7120819