An investigation of slaughter weight and muscle type effects on carcass fatty acid profiles and meat textural characteristics of young Holstein Friesian bulls

Heliyon. 2024 Mar 4;10(6):e27316. doi: 10.1016/j.heliyon.2024.e27316. eCollection 2024 Mar 30.

Abstract

Study objectives included the assessment of carcass fatty acid composition and meat texture characteristics of younger Holstein Friesian bulls. Three experimental groups were formed based on the weights of the 23 young bulls at slaughter: lighter, medium, and heavier. Samples were taken from the Gluteus medius (GM) and Longissimus thoracis muscles 24 h after slaughter. Fatty acid composition, Warner-Bratzler Meat Shear (WBS) measurements, as well as textural profile analysis (TPA) and sensory analysis of the muscle samples were conducted. The fatty acid composition was determined using Thin Layer Chromatography (HPTLC). Polyunsaturated fatty acids and dietary fatty acids give a neutral hypocholesterolemic effect in direct fluorescent antibody (DFA) contents, DFA/OFA (C14:0+C16:0) ratio, hardness, Warner-Bratzler Shear force and also the chews number - which is desirable - before swallowing (NCBS) the meat were significantly decreased with the increasing slaughter weight. Higher slaughter weight resulted in a larger amount of beef with a better panel tenderness score; however, the meat obtained from the LSW group was less healthy considering the fatty acid profile. Additionally, internal fat contained the highest saturated fatty acids concentrations, while subcutaneous fat contained the highest amount of monounsaturated fatty acids. Furthermore, intramuscular fat levels were highest in PUFA and PUFA/SFA ratio. As a result, this study strongly suggests that slaughter weight and anatomical location of fat samples contribute significantly to meat texture characteristics and fatty acid profiles in Holstein Friesian bulls.

Keywords: Fatty acid composition; Meat textural attributes; Sensory evaluation; Slaughter weight; Textural profile analysis.