Phosphorus recovery from sewage sludge via Mg-air battery system

Sci Total Environ. 2024 May 20:926:171805. doi: 10.1016/j.scitotenv.2024.171805. Epub 2024 Mar 19.

Abstract

A pressing issue in contemporary society is the resource scarcity of phosphorus. Operating on the principle of electrochemical reactions between Mg as the anode and oxygen from air as the cathode, Mg-air batteries (MAB) have been employed to provide new prospects for phosphorus recovery in struvite form. Different phosphorus concentrations and reaction time impact struvite generation in MAB systems; however, the exact mechanism has rarely been investigated. We investigated how varying the initial phosphorus concentration and the reaction time affects phosphorus recovery, electricity generation, and the efficiency of struvite production in MAB. Additionally, we examine the impact of solid carbon sources on phosphorus transformation in sludge. The findings revealed that the incorporation of solid carbon sources facilitated the release of phosphate by changing phosphorus speciation. The electrolyte derived from the conditioned sludge filtrate exhibited a remarkable phosphorus removal efficiency of 91.7 % within 1 h, yielding the highest struvite purity of ∼70 %, whereas that using raw sludge filtrate or extending the reaction time was found to be less effective, even reducing struvite formation. Furthermore, different electrolytes influence the system's ability to passivate anode, and electrolytes with higher phosphorus concentrations have better electricity production performance. The results by Visual MINTEQ model confirmed that longer reaction times and lower initial phosphorus concentrations can negatively affect struvite formation by introducing Mg3(PO4)2 and Mg(OH)2. The integration of agricultural waste as carbon sources with MAB for phosphorus recovery represents a potential methodology for struvite recuperation from sewage sludge, thereby heralding a sustainable strategy for resource recovery.

Keywords: Mg-air batteries; Phosphorus recovery; Solid carbon sources; Struvite; Visual MINTEQ.