Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks

J Phys Chem Lett. 2024 Mar 28;15(12):3390-3403. doi: 10.1021/acs.jpclett.4c00296. Epub 2024 Mar 19.

Abstract

Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.

Publication types

  • Review