Developing climate change adaptation pathways in the agricultural sector based on robust decision-making approach (case study: Sefidroud Irrigation Network, Iran)

Environ Monit Assess. 2024 Mar 18;196(4):378. doi: 10.1007/s10661-024-12511-7.

Abstract

Allocation of water in the situation of climate change presents various uncertainties. Consequently, decisions must be made to ensure stability and functionality across different climatic scenarios. This study aims to examine the effectiveness of adaptation strategies in the agricultural sector, including a 5% increase in irrigation efficiency (S1) and a shift in irrigation method to Dry-DSR (direct seeded rice) under conditions of climatic uncertainty using a decision-making approach. The study focuses on the basin downstream of the Sefidroud dam, encompassing the Sefidroud irrigation and drainage network. Initially, basin modeling was conducted using the WEAP integrated management software for the period 2006-2020. Subsequently, the impact of climate change was assessed, considering RCP2.6, RCP4.5, and RCP8.5 emission scenarios on surface water resources from 2021 to 2050. Runoff and cultivated area, both subject to uncertainty, were identified as key parameters. To evaluate strategy performance under different uncertainties and determine the efficacy of each strategy, regret and satisfaction approaches were employed. Results indicate a projected decrease in future rainfall by 3.5-11.8% compared to the base period, accompanied by an increase in maximum and minimum temperatures (0.83-1.62 °C and 1.15-1.33 °C, respectively). Inflow to the Sefidroud dam is expected to decrease by 13-28%. Presently, the Sefidroud irrigation and drainage network faces an annual deficit of 505.4 MCM, and if current trends persist with the impact of climate change, this shortfall may increase to 932.7 MCM annually. Furthermore, satisfaction indices for strategy (S2) are 0.77 in an optimistic scenario and 0.70 in strategy (S1). In a pessimistic scenario, these indices are 0.67 and 0.56, respectively. Notably, changing the irrigation method with Dry-DSR is recommended as a robust strategy, demonstrating the ability to maintain basin stability under a broad range of uncertainties and climate change scenarios. It is crucial to note that the results solely highlight the effects of climate change on water sources entering the Sefidroud dam. Considering anthropogenic activities upstream of the Sefidroud basin, water resource shortages are expected to increase. Therefore, reallocating water resources and implementing practical and appropriate measures in this area are imperative.

Keywords: Climate change; Robust decision-making; Sefidroud River; WEAP model; Water resources management.

MeSH terms

  • Agricultural Irrigation / methods
  • Agriculture / methods
  • Climate Change*
  • Environmental Monitoring*
  • Iran
  • Water

Substances

  • Water