Soil microbial functional profiles of P-cycling reveal drought-induced constraints on P-transformation in a hyper-arid desert ecosystem

Sci Total Environ. 2024 May 15:925:171767. doi: 10.1016/j.scitotenv.2024.171767. Epub 2024 Mar 16.

Abstract

Soil water conditions are known to influence soil nutrient availability, but the specific impact of different conditions on soil phosphorus (P) availability through the modulation of P-cycling functional microbial communities in hyper-arid desert ecosystems remains largely unexplored. To address this knowledge gap, we conducted a 3-year pot experiment using a typical desert plant species (Alhagi sparsifolia Shap.) subjected to two water supply levels (25 %-35 % and 65 %-75 % of maximum field capacity, MFC) and four P-supply levels (0, 1, 3, and 5 g P m-2 y-1). Our investigation focused on the soil Hedley-P pool and the four major microbial groups involved in the critical phases of soil microbial P-cycling. The results revealed that the drought (25 %-35 % MFC) and no P-supply treatments reduced soil resin-P and NaHCO3-Pi concentrations by 87.03 % and 93.22 %, respectively, compared to the well-watered (65 %-75 % MFC) and high P-supply (5 g P m-2 y-1) treatments. However, the P-supply treatment resulted in a 12 %-22 % decrease in the soil NH4+-N concentration preferred by microbes compared to the no P-supply treatment. Moreover, the abundance of genes engaged in microbial P-cycling (e.g. gcd and phoD) increased under the drought and no P-supply treatments (p < 0.05), suggesting that increased NH4+-N accumulation under these conditions may stimulate P-solubilizing microbes, thereby promoting the microbial community's investment in resources to enhance the P-cycling potential. Furthermore, the communities of Steroidobacter cummioxidans, Mesorhizobium alhagi, Devosia geojensis, and Ensifer sojae, associated with the major P-cycling genes, were enriched in drought and no or low-P soils. Overall, the drought and no or low-P treatments stimulated microbial communities and gene abundances involved in P-cycling. However, this increase was insufficient to maintain soil P-bioavailability. These findings shed light on the responses and feedback of microbial-mediated P-cycling behaviors in desert ecosystems under three-year drought and soil P-deficiency.

Keywords: Desert ecosystem; Functional microbiome; Metagenomics; Soil P-cycling; Soil phosphorus fractions.

MeSH terms

  • Droughts
  • Ecosystem*
  • Microbiota*
  • Plants
  • Soil
  • Soil Microbiology

Substances

  • Soil