Computational methods for alignment and integration of spatially resolved transcriptomics data

Comput Struct Biotechnol J. 2024 Mar 5:23:1094-1105. doi: 10.1016/j.csbj.2024.03.002. eCollection 2024 Dec.

Abstract

Most of the complex biological regulatory activities occur in three dimensions (3D). To better analyze biological processes, it is essential not only to decipher the molecular information of numerous cells but also to understand how their spatial contexts influence their behavior. With the development of spatially resolved transcriptomics (SRT) technologies, SRT datasets are being generated to simultaneously characterize gene expression and spatial arrangement information within tissues, organs or organisms. To fully leverage spatial information, the focus extends beyond individual two-dimensional (2D) slices. Two tasks known as slices alignment and data integration have been introduced to establish correlations between multiple slices, enhancing the effectiveness of downstream tasks. Currently, numerous related methods have been developed. In this review, we first elucidate the details and principles behind several representative methods. Then we report the testing results of these methods on various SRT datasets, and assess their performance in representative downstream tasks. Insights into the strengths and weaknesses of each method and the reasons behind their performance are discussed. Finally, we provide an outlook on future developments. The codes and details of experiments are now publicly available at https://github.com/YangLabHKUST/SRT_alignment_and_integration.

Keywords: Batch effects; Data integration; Slices alignment; Spatially resolved transcriptomics.

Publication types

  • Review