CRABP2 reduces the sensitivity of Olaparib in ovarian cancer by downregulating Caspase-8 and decreasing the production of reactive oxygen species

Chem Biol Interact. 2024 Apr 25:393:110958. doi: 10.1016/j.cbi.2024.110958. Epub 2024 Mar 15.

Abstract

Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, such as Olaparib, have been pivotal in treating BRCA-deficient ovarian cancer. However, their efficacy is limited in over 40% of BRCA-deficient patients, with acquired resistance posing new clinical challenges. To address this, we employed bioinformatics methods to identify key genes impacting Olaparib sensitivity in ovarian cancer. Through comprehensive analysis of public databases including GEO, CPTAC, Kaplan Meier Plotter, and CCLE, we identified CRABP2 as significantly upregulated at both mRNA and protein levels in ovarian cancer, correlating with poor prognosis and decreased Olaparib sensitivity. Using colony formation and CCK-8 assays, we confirmed that CRABP2 knockdown in OVCAR3 and TOV112D cells enhanced sensitivity to Olaparib. Additionally, 4D label-free quantitative proteomics analysis, GSEA, and GO/KEGG analysis revealed CRABP2's involvement in regulating oxidation signals. Flow cytometry, colony formation assays, and western blotting demonstrated that CRABP2 knockdown promoted ROS production by activating Caspase-8, thereby augmenting Olaparib sensitivity and inhibiting ovarian cancer cell proliferation. Moreover, in xenograft models, CRABP2 knockdown significantly suppressed tumorigenesis and enhanced Olaparib sensitivity, with the effect being reversed upon Caspase-8 knockdown. These findings suggest that CRABP2 may modulate Olaparib sensitivity in ovarian cancer through the Caspase-8/ROS axis, highlighting its potential as a target for Olaparib sensitization.

Keywords: CRABP2; Caspase-8; Olaparib sensitization; Ovarian cancer; ROS.

MeSH terms

  • Apoptosis
  • Caspase 8 / genetics
  • Caspase 8 / metabolism
  • Cell Line, Tumor
  • Female
  • Humans
  • Ovarian Neoplasms* / drug therapy
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / metabolism
  • Phthalazines* / pharmacology
  • Phthalazines* / therapeutic use
  • Piperazines* / therapeutic use
  • Poly(ADP-ribose) Polymerase Inhibitors / pharmacology
  • Poly(ADP-ribose) Polymerase Inhibitors / therapeutic use
  • Poly(ADP-ribose) Polymerases / metabolism
  • Reactive Oxygen Species / metabolism

Substances

  • Caspase 8
  • olaparib
  • Phthalazines
  • Piperazines
  • Poly(ADP-ribose) Polymerase Inhibitors
  • Poly(ADP-ribose) Polymerases
  • Reactive Oxygen Species