An ultrasensitive electrochemical immunosensor based on meso-PdN NCs and Au NPs/N-CNTs for quantitative cTnI detection

Bioelectrochemistry. 2024 Mar 8:158:108680. doi: 10.1016/j.bioelechem.2024.108680. Online ahead of print.

Abstract

Electrochemical immunosensors have gained considerable attention in detecting human disease markers due to their excellent specificity, high sensitivity, and facile operation. Herein, a rational-designed sandwich-type electrochemical immunosensor is constructed for the sensitive detection of cardiac troponin I (cTnI) using nitrogen-doped carbon nanotubes loaded with gold nanoparticles (Au NPs/N-CNTs) as substrate and highly active mesoporous palladium-nitrogen nanocubes (meso-PdN NCs) as secondary antibody markers. Benefitting from its large specific surface area (638.04 m2 g-1) and high nitrogen content, novel polydopamine (PDA)/ halloysite nanotubes (HNTs) hybrid derived one-dimensional (1D) N-CNTs can provide more binding sites for the in-situ growth of Au NPs to connect Ab1. Furthermore, as an ideal substrate material, Au NPs/N-CNTs exhibit finely tuned mesoporous structures and outstanding conductivity, which facilitate the mass and electron transfer during the electrocatalysis process. Besides, highly concave surfaces and crystalline mesopores of meso-PdN NCs expose more surfaces and crevices, providing abundant reactive sites for H2O2 reduction. Remarkably, the as-obtained immunosensor presented a wide linear range (from 10 fg mL-1 to 100 ng mL-1) and an excellent low detection limit (9.85 fg mL-1). This study may offer new insights into the precise fabrication of efficient electrochemical immunosensors for various clinical diagnosis applications.

Keywords: Meso-PdN NCs; Porous carbon materials; Sandwich-type electrochemical immunosensor; cTnI.