Diversity and distribution analysis of eukaryotic communities in the Xiangshan Bay, East China sea by metabarcoding approach

Mar Environ Res. 2024 May:197:106451. doi: 10.1016/j.marenvres.2024.106451. Epub 2024 Mar 12.

Abstract

Eukaryotic communities play an important role in the coastal ecosystem of Xiangshan Bay, a narrow semi-closed bay famous for fisheries and marine farming. However, information on the diversity and composition of eukaryotic communities in Xiangshan Bay remains unclear. In this study, the metabarcoding approach was utilized to comprehensively investigate the eukaryotic plankton community structure and dominant taxa, particularly eukaryotic microalgae, in the Xiangshan Bay over a period of four months in 2018. The results showed that the three major phyla were Arthropoda, Chlorophyta, and Bacillariophyta. The richness indices revealed that species richness peaked in February and was at its lowest in May. Diversity indices showed that the samples collected in May had the lowest diversity. Centropages was detected in the samples of all months, however, its highest dominance was observed in the samples collected in February. In addition, compared to other months, a greater proportion of eukaryotic microalgae was witnessed in March. The three eukaryotic algae with highest abundances in March were Cyclotella, Prorocentrum, and Thalassiosira. Moreover, high diversity of pico-sized (0.2-2.0 μm) phytoplankton (which are often easily missed by microscopy) was discovered in this study by using metabarcoding approach. This study highlights the strength and significance of the metabarcoding approach to uncover a large number of eukaryotic species which remains undetectable during application of conventional approaches. The findings of this study reveals that the eukaryotic community structure varies noticeably in both time and space throughout sampling period, with temperature being the most important environmental factor influencing these changes. This study lays a solid foundation to understand eukaryotic plankton composition, temporal and spatial dynamics and the distribution mechanism of eukaryotic plankton community in Xiangshan Bay, providing theoretical reference for further studies related to marine ecology.

Keywords: Eukaryotic microalgae; Eukaryotic plankton; Metabarcoding approach; Xiangshan bay.

MeSH terms

  • Bays
  • China
  • Diatoms*
  • Dinoflagellida*
  • Ecosystem
  • Microalgae*
  • Phytoplankton
  • Plankton