Extraction and identification of exosomes from three different sources of human ovarian granulosa cells and analysis of their differential miRNA expression profiles

J Assist Reprod Genet. 2024 Mar 16. doi: 10.1007/s10815-024-03086-w. Online ahead of print.

Abstract

Objective: As important functional cells in the ovary, ovarian granulosa cells are involved in the regulation of oocyte growth and development and play an important role in the study of female fertility preservation. Based on the importance of granulosa cell functionalism, in this study, we analyzed the exosome secretion capacity of human ovarian granulosa cells (SVOG/KGN-cell line, PGC-primary cells) and the differences in their miRNA expression.

Methods: Cells were identified by hematoxylin-eosin staining (HE) and FSHR immunofluorescence staining; CCK8 and colony-forming assay were performed to compare cell proliferation capacity; exosomes were extracted and identified by ultra-high speed centrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot analysis (WB), and the expression profile of each cellular exosomal miRNA was analyzed by miRNA high-throughput sequencing.

Results: The proliferative abilities of the three granulosa cells differed, but all had the ability to secrete exosomes. In the exosomes of SVOG, KGN, and PGC cells, 218, 327, and 471 miRNAs were detected, respectively. When compared to the exosomal miRNAs of PGC cells, 111 miRNAs were significantly different in SVOG, and 70 miRNAs were washed two significantly different in KGN cells. These differential miRNA functions were mainly enriched in the cell cycle, cell division/differentiation, multicellular biogenesis, and protein binding.

Conclusion: Human ovarian granulosa cells of different origins are capable of secreting exosomes, but there are still some differences in their exosomes and exosomal miRNAs, and experimental subjects should be selected rationally according to the actual situation.

Keywords: Exosomes; High-throughput sequencing; Ovarian granulosa cells; miRNA.