Risk control of heavy metal in waste incinerator ash by available solidification scenarios in cement production based on waste flow analysis

Sci Rep. 2024 Mar 15;14(1):6252. doi: 10.1038/s41598-024-56551-y.

Abstract

Incineration is a common method in municipal solid waste management, which has several advantages such as reducing the volume of waste, but with concerns about exhaust gas and ash management. In this study, heavy metals in bottom ash, secondary furnace ash and fly ash of two waste incinerators in Tehran and Nowshahr were analyzed and its control in cement production was investigated. For this purpose, twelve monthly samples of three types of incinerator ash were analyzed. By combining the studied ashes in the raw materials, the quantity of metals in the cement was analyzed. Finally, by investigating four scenarios based on quantitative variations in the routes of municipal solid waste, ash quantity and the related risk caused by its heavy metals were studied. The results showed that the concentration of heavy metals in the three ash samples of the studied incinerators was 19,513-23,972 µg/g and the composition of the metals included Hg (less than 0.01%), Pb (2.93%), Cd (0.59%), Cu (21.51%), Zn (58.7%), As (less than 0.01%), Cr (15.88%), and Ni (0.91%). The best quality of produced cement included 20% ash and 10% zeolite, which was the basis of the next calculations. It was estimated that the reduction of the release of metals into the environment includes 37 gr/day in best scenario equal to 10.6 tons/year. Ash solidification can be considered as a complementary solution in waste incinerator management.

Keywords: Heavy metals; Incinerator; Municipal solid waste; Solidification.