BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications

ACS Appl Mater Interfaces. 2024 Mar 27;16(12):14841-14851. doi: 10.1021/acsami.3c18827. Epub 2024 Mar 15.

Abstract

Advancement toward dye-sensitized photoelectrochemical cells to produce solar fuels by solar-driven water splitting requires a photosensitizer that is firmly attached to the semiconducting photoelectrodes. Covalent binding enhances the efficiency of electron injection from the photoexcited dye into the metal oxide. Optimization of charge transfer, efficient electron injection, and minimal electron-hole recombination are mandatory for achieving high efficiencies. Here, a BODIPY-based dye exploiting a novel surface-anchoring mode via boron is compared to a similar dye bound by a traditional carboxylic acid anchoring group. Through terahertz and transient absorption spectroscopic studies, along with interfacial electron transfer simulations, we find that, when compared to the traditional carboxylic acid anchoring group, electron injection of boron-bound BODIPY is faster into both TiO2 and SnO2. Although the surface coverage is low compared with carboxylic acids, the binding stability is improved over a wide range of pH. Subsequent photoelectrochemical studies using a sacrificial electron donor showed that this combined dye and anchoring group maintained photocurrent with good stability over long-time irradiation. This recently discovered binding mode of BODIPY shows excellent electron injection and good stability over time, making it promising for future investigations.

Keywords: BODIPY; electron injection; interfacial electron transfer; photophysics; photosensitizer; surface attachment.