Co-occurrence of ozone and PM2.5 pollution in urban/non-urban areas in eastern China from 2013 to 2020: Roles of meteorology and anthropogenic emissions

Sci Total Environ. 2024 May 10:924:171687. doi: 10.1016/j.scitotenv.2024.171687. Epub 2024 Mar 13.

Abstract

We applied a three-dimensional (3-D) global chemical transport model (GEOS-Chem) to evaluate the influences of meteorology and anthropogenic emissions on the co-occurrence of ozone (O3) and fine particulate matter (PM2.5) pollution day (O3-PM2.5PD) in urban and non-urban areas of the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions during the warm season (April-October) from 2013 to 2020. The model captured the observed O3-PM2.5PD trends and spatial distributions well. From 2013 to 2020, with changes in both anthropogenic emissions and meteorology, the simulated values of O3-PM2.5PD in the urban (non-urban) areas of the BTH and YRD regions were 424.8 (330.1) and 309.3 (286.9) days, respectively, suggesting that pollution in non-urban areas also warrants attention. The trends in the simulated values of O3-PM2.5PD were -0.14 and -0.15 (+1.18 and +0.81) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Sensitivity simulations revealed that changes in anthropogenic emissions decreased the occurrence of O3-PM2.5PD, with trends of -0.99 and -1.23 (-1.47 and -1.92) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Conversely, meteorological conditions could exacerbate the frequency of O3-PM2.5PD, especially in the urban YRD areas, but less notably in the urban BTH areas, with trends of +2.11 and +0.30 days yr-1, respectively, owing to changes in meteorology only. The increases in T2m_max and T2m were the main meteorological factors affecting O3-PM2.5PD in most BTH and YRD areas. Furthermore, by conducting sensitivity experiments with different levels of pollutant precursor reductions in 2020, we found that volatile organic compound (VOC) reductions primarily benefited O3-PM2.5PD decreases in urban areas and that NOx reductions more notably influenced those in non-urban areas, especially in the YRD region. Simultaneously, reducing VOC and NOx emissions by 50 % resulted in considerable O3-PM2.5PD decreases (58.8-72.6 %) in the urban and non-urban areas of the BTH and YRD regions. The results of this study have important implications for the control of O3-PM2.5PD in the urban and non-urban areas of the BTH and YRD regions.

Keywords: Emission reductions; Meteorology; Ozone and PM(2.5) pollution.