Reduced synaptic depression in human neurons carrying homozygous disease-causing STXBP1 variant L446F

Hum Mol Genet. 2024 May 18;33(11):991-1000. doi: 10.1093/hmg/ddae035.

Abstract

MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.

Keywords: CRISPR; STXBP1; electrophysiology; epilepsy; induced pluripotent stem cells.

MeSH terms

  • Animals
  • Homozygote*
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Mice
  • Munc18 Proteins* / genetics
  • Munc18 Proteins* / metabolism
  • Mutation
  • Neurons* / metabolism
  • Neurons* / pathology
  • Synapses / genetics
  • Synapses / metabolism
  • Synapses / pathology
  • Synaptic Transmission* / genetics

Substances

  • STXBP1 protein, human