SIRT3 Expression Predicts Overall Survival and Neoadjuvant Chemosensitivity in Triple-Negative Breast Cancer

Cancer Manag Res. 2024 Mar 8:16:137-150. doi: 10.2147/CMAR.S445248. eCollection 2024.

Abstract

Background: The Sirtuin (SIRT) family consists of seven evolutionary conserved NAD-dependent deacetylases that play important roles in various cancers, including breast cancer (BC). SIRTs expression has been reported to have prognostic value in BC, but these studies used limited sample size and yielded inconsistent conclusions. This study evaluated the association of SIRT3 and other SIRT family members with survival and neoadjuvant chemotherapy outcomes.

Methods: BC patients' data was obtained from the TCGA-BRCA, METABRIC and GEO databases, comprising 4336 samples. SIRTs expression and overall survival (OS) were analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. SIRT3 expression levels were compared between pathologic complete response (pCR) and non-pCR groups after neoadjuvant chemotherapy in triple-negative breast cancer (TNBC). Protein-protein interaction networks were constructed using the STRING database. Gene set enrichment analysis (GSEA) was performed to explore potential functions of SIRT3.

Results: Through systematic analysis of SIRTs expression and OS of BC using three independent cohorts: TCGA-BRCA, METABRIC and GSE16446, we found that high SIRT3 expression was significantly associated with worse OS in TNBC in the TCGA-BRCA cohort, which was validated in the METABRIC and GSE16446 cohorts. SIRT3 expression was correlated with BC subtypes and American Joint Committee on Cancer (AJCC) T stage, but not with age-at-diagnosis, race, or tumor stage. Moreover, TNBC patients with higher SIRT3 expression had lower pCR rates after neoadjuvant chemotherapy (p = 6.40e-03) and SIRT3 expression was significantly lower in the pCR group than in the non-pCR group in TNBC (p = 4.2e-03). GSEA indicated that SIRT3 was involved in drug-related pathways such as oxidative phosphorylation, metabolism of xenobiotics by cytochrome P450, and drug metabolism.

Conclusion: Our study suggests that SIRT3 is a potential biomarker for both OS and neoadjuvant chemosensitivity in TNBC. It may also assist in selecting suitable candidates and treatment options for TNBC patients.

Keywords: SIRT3; biomarker; breast cancer; neoadjuvant chemotherapy; prognosis.

Grants and funding

This project was supported by the National Natural Science Foundation of China, China (No. 82172356, No. 81972003), the Natural Science Foundation of Guangdong, China (No. 2021A1515012144 and 2020A1515111165).