The Impact of Postures and Moving Directions in Fire Evacuation in a Low-Visibility Environment

Sensors (Basel). 2024 Feb 21;24(5):1378. doi: 10.3390/s24051378.

Abstract

Walking speed is a significant aspect of evacuation efficiency, and this speed varies during fire emergencies due to individual physical abilities. However, in evacuations, it is not always possible to keep an upright posture, hence atypical postures, such as stoop walking or crawling, may be required for survival. In this study, a novel 3D passive vision-aided inertial system (3D PVINS) for indoor positioning was used to track the movement of 20 volunteers during an evacuation in a low visibility environment. Participants' walking speeds using trunk flexion, trunk-knee flexion, and upright postures were measured. The investigations were carried out under emergency and non-emergency scenarios in vertical and horizontal directions, respectively. Results show that different moving directions led to a roughly 43.90% speed reduction, while posture accounted for over 17%. Gender, one of the key categories in evacuation models, accounted for less than 10% of the differences in speed. The speeds of participants under emergency scenarios when compared to non-emergency scenarios was also found to increase by 53.92-60% when moving in the horizontal direction, and by about 48.28-50% when moving in the vertical direction and descending downstairs. Our results also support the social force theory of the warming-up period, as well as the effect of panic on the facilitating occupants' moving speed.

Keywords: building fire evacuation; building fire safety; evacuation speed; evacuation time; stoop walking.

MeSH terms

  • Fires*
  • Humans
  • Posture
  • Standing Position
  • Walking Speed
  • Walking*