[Assessment of Microplastic Pollution and Estimation of Annual Emission Volume in the Dongshan Canal of Yichang City]

Huan Jing Ke Xue. 2024 Mar 8;45(3):1448-1456. doi: 10.13227/j.hjkx.202303201.
[Article in Chinese]

Abstract

Microplastics, as an emerging pollutant, have garnered global attention. Urban areas are key hotspots for the generation of microplastic pollution, whereas urban water bodies act as vital conduits for the dissemination of microplastics to other freshwater environments. In this study, the Dongshan Canal in the urban area of Yichang City was selected as the research subject. Through field sampling, microscopic observation, and Fourier infrared spectroscopy analysis conducted in July and October 2022, the occurrence characteristics and potential pollution sources of microplastics in the water body of the Dongshan Canal were identified and analyzed. The ecological risk and annual emission volume of microplastics in the water body were quantitatively assessed using the risk index (H), pollution load index (PLI) model, and proportional flow method. The results indicated that the average abundances of microplastics in the surface water of the Dongshan Canal were (7 295±1 051) n·m-3 (July) and (5 145±762.6) n·m-3 (October). Fibrous microplastics (27.63%-63.23%), microplastics with a size of <0.5 mm (75.68%-96.2%), and colored microplastics (22.73%-61.83%) dominated the samples, with PE (30.1%) and PET (26.33%) being the predominant materials. The assessment results from the two models classified the ecological risk index of the Dongshan Canal as class Ⅲ, whereas the overall pollution load fell into class I, with certain sampling points reaching class Ⅱ. Estimates revealed that the Dongshan Canal transports approximately 3.37 t of microplastics to the Yangtze River annually. Overall, the microplastic pollution level in the Dongshan Canal of Yichang City could be considered moderate, with potential sources of pollution including laundry wastewater, personal care products, and plastic waste.

Keywords: ecological risk; emission volume; microplastics(MPs); pollution occurrence; urban waterways.

Publication types

  • English Abstract