Interfacial Polarization Control Engineering and Ferroelectric PZT/Graphene Heterostructure Integrated Application

Nanomaterials (Basel). 2024 Feb 27;14(5):432. doi: 10.3390/nano14050432.

Abstract

Integration and miniaturization are the inevitable trends in the development of electronic devices. PZT and graphene are typical ferroelectric and carbon-based materials, respectively, which have been widely used in various fields. Achieving high-quality PZT/graphene heterogeneous integration and systematically studying its electrical properties is of great significance. In this work, we reported the characterization of a PZT film based on the sol-gel method. Additionally, the thickness of the PZT film was pushed to the limit size (~100 nm) by optimizing the process. The test results, including the remnant and leakage current, show that the PZT film is a reliable and suitable platform for further graphene-integrated applications. The non-destructive regulation of the electrical properties of graphene has been studied based on a domain-polarized substrate and strain-polarized substrate. The domain structures in the PZT film exhibit different geometric structures with ~0.3 V surface potential. The I-V output curves of graphene integrated on the surface of the PZT film exhibited obvious rectification characteristics because of p/n-doping tuned by an interfacial polarized electric field. In contrast, a ~100 nm thick PZT film makes it easy to acquire a larger strain gradient for flexural potential. The tested results also show a rectification phenomenon, which is similar to domain polarization substrate regulation. Considering the difficulty of measuring the flexural potential, the work might provide a new approach to assessing the flexural polarized regulation effect. A thinner ferroelectric film/graphene heterojunction and the polarized regulation of graphene will provide a platform for promoting low-dimension film-integrated applications.

Keywords: ferroelectric film; graphene; polarized substrate; rectification.