Impact of Photoluminescence Imaging Methodology on Transport Parameters in Semiconductors

J Phys Chem Lett. 2024 Mar 21;15(11):3109-3117. doi: 10.1021/acs.jpclett.4c00169. Epub 2024 Mar 12.

Abstract

Triplet-triplet annihilation-induced delayed emission provides a pathway for investigating triplets via emission spectroscopy. This bimolecular annihilation depends directly on the transport properties of triplet excitons in disordered organic semiconductors. Photoluminescence (PL) imaging is a direct method for studying exciton and charge-carrier diffusivity. However, most of these studies neglect dispersive transport. Early time scale measurements using this technique can lead to an overestimation of the diffusion coefficient (DT) or diffusion length (Ld). In this study, we investigated the time-dependent triplet DT using PL imaging. We observed an overestimation of Ld in classical delayed PL imaging, often 1 order of magnitude higher than the actual Ld value. We compared various thicknesses of polymeric thin films to study the dispersive nature of triplet excitons. Transient analysis of delayed PL imaging and steady state imaging reveals the importance of considering the time-dependent nature of DT for the triplet excitons in disordered electronic materials.