Age-Related Macular Degeneration, a Mathematically Tractable Disease

Invest Ophthalmol Vis Sci. 2024 Mar 5;65(3):4. doi: 10.1167/iovs.65.3.4.

Abstract

A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.

Publication types

  • Review

MeSH terms

  • Adult
  • Aged
  • Geographic Atrophy*
  • Humans
  • Macula Lutea*
  • Macular Degeneration*
  • Retina
  • Retinal Cone Photoreceptor Cells