Impact of semolina-barley mixture on the volatolomic profile of dough and pasta: characterization by a multivariate chemometric approach

J Sci Food Agric. 2024 Mar 8. doi: 10.1002/jsfa.13446. Online ahead of print.

Abstract

Background: Barley flour, known to be rich in various phytochemicals, has been demonstrated to improve the technological and nutritional properties of pasta; however, its volatile profile, on which its aromatic properties depend, also plays an important role in the acceptance of barley-enriched pasta. In the present work, volatile organic compounds (VOCs) of semolina doughs enriched with different percentages of barley and of the related pasta were characterized by solid phase micro-extraction (HS-SPME) coupled to gas-chromatography/mass spectrometry (GC-MS), and evaluated using a multivariate statistical approach, including principal component analysis (PCA), cluster heatmaps, Pearson's and Spearman's correlations, and partial least squares correlation (PLSC).

Results: The effects of single raw materials, and their interactions, were studied to establish their importance in the volatile profile of the samples, and the correlation between the dough VOCs and the processed product VOCs was assessed. The presence of barley flour markedly affected the volatile profile in comparison with the dough obtained with only durum wheat. For alcohols, esters, terpenes, and some aldehydes there was a clear correlation with the percentage of barley. For some of the VOCs, on the other hand, a strong dependence on the ingredients interaction effect due to the mixing stage has been demonstrated.

Conclusion: The heatmaps allowed a good graphical visualization of the relationship between molecules and barley percentage, offering the possibility to select the best one according to the desired volatolomic footprint. Pasta with 40% of barley was demonstrated to give pasta with the most complex volatile profile. © 2024 Society of Chemical Industry.

Keywords: barley; gas chromatography–mass spectrometry; heatmap; semolina; solid phase micro‐extraction; volatile organic compounds.