Influence of rotor impeller structure on performance improvement of suspended axial flow blood pumps

Int J Artif Organs. 2024 Mar;47(3):162-172. doi: 10.1177/03913988231225128. Epub 2024 Mar 7.

Abstract

Background: The hydrodynamic suspension structure design of the axial blood pump impeller can avoid the problems associated with using mechanical bearings. However, the particular impeller structure will impact the hydraulic performance and hemolysis of the blood pump.

Method: This article combines computational fluid dynamics (CFD) with the Lagrange particle tracking method, aiming to improve the blood pump's hydraulic and hemolysis performance. It analyzes the flow characteristics and hemolysis performance inside the pump. It optimizes the taper of the impeller hub, the number of blades, and the inclination angle of the circumferential groove at the top of the blade.

Results: Under certain rotational speed conditions, an increase in the taper of the impeller hub or the number of blades can increase the pumping pressure of a blood pump, but an increase in the number of blades will reduce the flow rate. The design of circumferential grooves at the top of the blade can increase the pumping pressure to a certain extent, with little impact on the hemolysis performance. The impeller structure is optimized based on the estimated hemolysis of each impeller model blood pump. It could be seen that when the pump blood pressure and flow rate were reached, the optimized impeller speed was reduced by 11.4%, and the estimated hemolysis value was reduced by 10.5%.

Conclusion: In this paper, the rotor impeller structure of the blood pump was optimized to improve the hydraulic and hemolytic performance effectively, which can provide a reference for the related research of the axial flow blood pump using hydraulic suspension.

Keywords: Axial flow blood pump; hemolysis; impeller hub taper; number of blades; performance improvement.

MeSH terms

  • Blood Pressure
  • Computer Simulation
  • Equipment Design
  • Heart-Assist Devices*
  • Hemolysis
  • Humans