Identifying G6PC3 as a Potential Key Molecule in Hypoxic Glucose Metabolism of Glioblastoma Derived from the Depiction of 18F-Fluoromisonidazole and 18F-Fluorodeoxyglucose Positron Emission Tomography

Biomed Res Int. 2024 Feb 28:2024:2973407. doi: 10.1155/2024/2973407. eCollection 2024.

Abstract

Purpose: Glioblastoma is the most aggressive primary brain tumor, characterized by its distinctive intratumoral hypoxia. Sequential preoperative examinations using fluorine-18-fluoromisonidazole (18F-FMISO) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) could depict the degree of glucose metabolism with hypoxic condition. However, molecular mechanism of glucose metabolism under hypoxia in glioblastoma has been unclear. The aim of this study was to identify the key molecules of hypoxic glucose metabolism.

Methods: Using surgically obtained specimens, gene expressions associated with glucose metabolism were analyzed in patients with glioblastoma (n = 33) who underwent preoperative 18F-FMISO and 18F-FDG PET to identify affected molecules according to hypoxic condition. Tumor in vivo metabolic activities were semiquantitatively evaluated by lesion-normal tissue ratio (LNR). Protein expression was confirmed by immunofluorescence staining. To evaluate prognostic value, relationship between gene expression and overall survival was explored in another independent nonoverlapping clinical cohort (n = 17) and validated by The Cancer Genome Atlas (TCGA) database (n = 167).

Results: Among the genes involving glucose metabolic pathway, mRNA expression of glucose-6-phosphatase 3 (G6PC3) correlated with 18F-FDG LNR (P = 0.03). In addition, G6PC3 mRNA expression in 18F-FMISO high-accumulated glioblastomas was significantly higher than that in 18F-FMISO low-accumulated glioblastomas (P < 0.01). Protein expression of G6PC3 was consistent with mRNA expression, which was confirmed by immunofluorescence analysis. These findings indicated that the G6PC3 expression might be facilitated by hypoxic condition in glioblastomas. Next, we investigated the clinical relevance of G6PC3 in terms of prognosis. Among the glioblastoma patients who received gross total resection, mRNA expressions of G6PC3 in the patients with poor prognosis (less than 1-year survival) were significantly higher than that in the patients who survive more than 3 years. Moreover, high mRNA expression of G6PC3 was associated with poor overall survival in glioblastoma, as validated by TCGA database.

Conclusion: G6PC3 was affluently expressed in glioblastoma tissues with coincidentally high 18F-FDG and 18F-FMISO accumulation. Further, it might work as a prognostic biomarker of glioblastoma. Therefore, G6PC3 is a potential key molecule of glucose metabolism under hypoxia in glioblastoma.

MeSH terms

  • Fluorine Radioisotopes*
  • Fluorodeoxyglucose F18
  • Glioblastoma* / diagnostic imaging
  • Glioblastoma* / genetics
  • Glucose
  • Glucose-6-Phosphatase
  • Humans
  • Hypoxia
  • Misonidazole / analogs & derivatives*
  • Positron-Emission Tomography
  • RNA, Messenger
  • Tomography, X-Ray Computed

Substances

  • Fluorodeoxyglucose F18
  • fluoromisonidazole
  • Glucose
  • Fluorine-18
  • RNA, Messenger
  • G6PC3 protein, human
  • Glucose-6-Phosphatase
  • Fluorine Radioisotopes
  • Misonidazole