Distribution, source apportionment, and ecological risk assessment of soil antibiotic resistance genes in urban green spaces

Environ Res. 2024 Mar 4;251(Pt 1):118601. doi: 10.1016/j.envres.2024.118601. Online ahead of print.

Abstract

Urban green spaces play a crucial role in cities by providing near-natural environments that greatly impacts the health of residents. However, these green spaces have recently been scrutinized as potential reservoirs of antibiotic resistance genes (ARGs), posing significant ecological risks. Despite this concern, our understanding of the distribution, sources, and ecological risks associated with ARGs remains limited. In this study, we investigated the spatial distribution of soil ARGs using spatial interpolation and auto-correlation analysis. To apportion the source of soil ARGs in urban green spaces of Tianjin, Geo-detector method (GDM) was employed. Furthermore, we evaluated the ecological risk posed by ARGs employing risk quotients (RQ). The results of our study showed a significantly higher abundance of Quinolone resistance genes in the soil of urban green spaces in Tianjin. These genes were mainly found in the northwest, central, and eastern regions of the city. Our investigation identified three main factors contributing to the presence of soil ARGs: antibiotic production, precipitation, livestock breeding, and hospital. The results of ecological risk in RQ value showed a high risk associated with Quinolone resistance genes, followed by Aminoglycoside, Tetracycline, Multidrug, MLSB, Beta Lactam, Sulfonamide, and Chloramphenicol. Mantel-test and correlation analysis revealed that the ecological risk of ARGs was greatly influenced by soil properties and heavy metals. This study provides a new perspective on source apportionment and the ecological risk assessment of soil ARGs in urban green spaces.

Keywords: Antibiotic resistance genes; Risk assessment; Source apportionment; Spatial distribution; Urban green space.