Ligand-based pharmacophore modeling and machine learning for the discovery of potent aurora A kinase inhibitory leads of novel chemotypes

Mol Divers. 2024 Mar 6. doi: 10.1007/s11030-024-10814-y. Online ahead of print.

Abstract

Aurora-A (AURKA) is serine/threonine protein kinase involved in the regulation of numerous processes of cell division. Numerous studies have demonstrated strong association between AURKA and cancer. AURKA is overexpressed in many cancers, such as colon, breast and prostate cancers. Consequently, AURKA has emerged as promising target for therapeutic intervention in cancer management. Herein, we describe a computational workflow for the discovery of novel anti-AURKA inhibitory leads starting with ligand-based assessment of the pharmacophoric space of six diverse sets of inhibitors. Subsequently, machine learning/QSAR modeling was coupled with genetic function algorithm to search for the best possible combination of machine learner, ligand-based pharmacophore(s) and molecular descriptors capable of explaining variation in anti-AURKA bioactivities within a collected list of inhibitors. Two learners succeeded in achieving acceptable structure/activity correlations, namely, random forests and extreme gradient boosting (XGBoost). Three pharmacophores emerged in the successful ML models. These were then used as 3D search queries to mine the National Cancer Institute database for novel anti-AURKA leads. Top-ranking 38 hits were assessed in vitro for their anti-AURKA bioactivities. Among them, three compounds exhibited promising dose-response curves, demonstrating experimental IC50 values ranging from sub-micromolar to low micromolar values. Remarkably, two of these compounds are of novel chemotypes.

Keywords: AURKA; Ligand-based technique; Machine learning; QSAR; RF; XGBoost.