Micro-kelvin temperature-stable system for biocalorimetry applications

Rev Sci Instrum. 2024 Mar 1;95(3):034902. doi: 10.1063/5.0188285.

Abstract

Achieving micro-kelvin (µK) temperature stability is critical for many calorimetric applications. For example, sub-nanowatt resolution biocalorimetry requires stabilization of the temperature of the calorimeter to µK levels. Here, we describe how µK temperature stability can be accomplished in a prototypical calorimetric system consisting of two nested shields and a suspended capillary tube, which is well suited for biocalorimetry applications. Specifically, we show that by employing nested shields with µTorr-levels of vacuum in the space between them as well as precise feedback control of the temperature of the shields (performed using high-resolution temperature sensors), the effect of ambient temperature fluctuations on the inner shield and the capillary tube can be attenuated by ∼100 dB. We also show that this attenuation is key to achieving temperature stabilities within ±1 and ±3 µK (amplitude of oscillations) for the inner shield and the capillary tube sensor, respectively, measured in a bandwidth of 1 mHz over a period of 10 h at room temperature (∼20.9 ± 0.2 °C). We expect that the methods described here will play a key role in advancing biocalorimetry.