Underwater dynamic polarization imaging without dependence on the background region

Opt Express. 2024 Feb 12;32(4):5397-5409. doi: 10.1364/OE.509909.

Abstract

Active-polarization imaging holds significant promise for achieving clear underwater vision. However, only static targets were considered in previous studies, and a background region was required for image restoration. To address these issues, this study proposes an underwater dynamic polarization imaging method based on image pyramid decomposition and reconstruction. During the decomposition process, the polarized image is downsampled to generate an image pyramid. Subsequently, the spatial distribution of the polarization characteristics of the backscattered light is reconstructed by upsampling, which recovered the clear scene. The proposed method avoids dependence on the background region and is suitable for moving targets with varying polarization properties. The experimental results demonstrate effective elimination of backscattered light while sufficiently preserving the target details. In particular, for dynamic targets, processing times that fulfill practical requirements and yield superior recovery effects are simultaneously obtained.