Photon blockade induced by two-photon absorption in cavity quantum electrodynamics

Opt Express. 2024 Feb 12;32(4):5117-5130. doi: 10.1364/OE.507086.

Abstract

Photon blockade (PB) is an important quantum phenomenon in cavity quantum electrodynamics (QED). Here, we investigate the PB effect in the simplest cavity QED systems (one cavity containing first a single atom and then two atoms), where only the atoms are weakly driven. Via the analytical calculation and numerical simulation, we show that the strong PB can be generated even with the weak-coupling regime at the total resonance. This blockade is ascribed to the two-photon absorption, which is fundamentally different from the conventional and unconventional blockade mechanisms. Therefore, our study provides an alternative approach to produce the PB in the atom-driven cavity QED system.