Early events during the aggregation of Aβ16-22-derived switch-peptides tracked using Protein Charge Transfer Spectra

Anal Chim Acta. 2024 Apr 8:1297:342374. doi: 10.1016/j.aca.2024.342374. Epub 2024 Feb 13.

Abstract

Background: Understanding Aβ aggregation and inhibiting it at early stages is of utmost importance in treating Alzheimer's and other related amyloidogenic diseases. However, majority of the techniques to study Aβ aggregation mainly target the late stages; while those used to monitor early stages are either expensive, use extrinsic dyes, or do not provide information on molecular level interactions. Here, we investigate the early events of Aβ16-22(KLVFFAE) aggregation using Aβ16-22 derived switch-peptides (SwPs) through a novel label-free approach employing Protein Charge Transfer Spectra (ProCharTS).

Results: When pH is increased from 2 to 7.2, the Aβ-derived switch peptides undergo controlled self-assembly, where the initial random coil peptides convert into β-sheet. We leveraged the intrinsic absorbance/luminescence arising from ProCharTS among growing peptide oligomers to observe the aggregation kinetics in real-time. In comparison to monomer, the lysine and glutamate headgroups in the peptide oligomer are expected to come in proximity enhancing ProCharTS intensity due to photoinduced electron transfer. With a combination of Aβ-derived switch-peptides and ProCharTS, we obtained structural insights on the early stages of Aβ-derived SwP aggregation in four unique peptides. Increase in scatter corrected ProCharTS absorbance (250-500 nm) and luminescence (320-720 nm) along with decreased mean luminescence lifetime (2.3-0.8 ns) characterize the initial stages of aggregation monitored for 1-96 h depending on the peptide. We correlated the results with Circular Dichroism (CD), 8-anilino-1-naphthalenesulfonic acid (ANS) and Thioflavin T (ThT) measurements.

Significance: We demonstrate ProCharTS as an intrinsic analytical probe with following advantages over other conventional methods to track aggregation: it is a label-free probe; it's intensity can be measured using a UV-Vis spectrophotometer; it is more sensitive in detecting the early molecular events in aggregation compared to ANS and ThT; and it can provide information on specific contacts made between charged headgroups of Lysine/Glutamate in the oligomer.

Keywords: Aggregation induced emission; Amyloids; Charge transfer; Deep-blue luminescence; Label-free; Switch peptides.

MeSH terms

  • Circular Dichroism
  • Coloring Agents
  • Glutamic Acid
  • Lysine*
  • Peptides*

Substances

  • Lysine
  • Peptides
  • Glutamic Acid
  • Coloring Agents