Single-double-band switchable optical circular polarizers based on surface plasmon resonance

Appl Opt. 2024 Feb 1;63(4):1153-1159. doi: 10.1364/AO.513837.

Abstract

A single-double-band switchable circular polarization filter based on surface plasmon resonance exhibits significant potential for applications in fields such as communication and sensing due to its adjustable, low-cost, and easy integration features. In this study, we propose a bi-layer rod nanostructure and use FEM simulation to study the transmission spectra of the structure. The results demonstrate that the structure exhibits both single- and double-band circular polarization filtering effects, which can be switched by varying geometric parameters such as the distance between the two layers and the width of nanorods. Furthermore, the filtering effects of both single- and double-band are highly dependent on the length of the nanorods, with average extinction rates reaching 486 and 2020/129, respectively; the operating bandwidths (defined as extinction ratio >10) can reach 170 nm and 35 nm/70 nm, respectively. The underlying physical mechanisms are clarified by analyzing the electric dipole, magnetic dipole resonance modes, and induced chiral fields on nanostructures.