Modifying the Electrocatalyst-Ionomer Interface via Sulfonated Poly(ionic liquid) Block Copolymers to Enable High-Performance Polymer Electrolyte Fuel Cells

ACS Energy Lett. 2020 Apr 29;5(6):1726-1731. doi: 10.1021/acsenergylett.0c00532. eCollection 2020 Jun 12.

Abstract

Polymer electrolyte membrane fuel cell (PEMFC) electrodes with a 0.07 mgPt cm-2 Pt/Vulcan electrocatalyst loading, containing only a sulfonated poly(ionic liquid) block copolymer (SPILBCP) ionomer, were fabricated and achieved a ca. 2× enhancement of kinetic performance through the suppression of Pt surface oxidation. However, SPILBCP electrodes lost over 70% of their electrochemical active area at 30% RH because of poor ionomer network connectivity. To combat these effects, electrodes made with a mix of Nafion/SPILBCP ionomers were developed. Mixed Nafion/SPILBCP electrodes resulted in a substantial improvement in MEA performance across the kinetic and mass transport-limited regions. Notably, this is the first time that specific activity values determined from an MEA were observed to be on par with prior half-cell results for Nafion-free Pt/Vulcan systems. These findings present a prospective strategy to improve the overall performance of MEAs fabricated with surface accessible electrocatalysts, providing a pathway to tailor the local electrocatalyst/ionomer interface.