Profiling and functional analysis of circular RNAs in yaks intramuscular fat

J Anim Physiol Anim Nutr (Berl). 2024 Mar 3. doi: 10.1111/jpn.13947. Online ahead of print.

Abstract

Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression. However, the regulatory mechanisms of lipid metabolism in yaks involved in circRNAs remain poorly understood. The IMF plays a crucial role in the quality of yak meat, to greatly improve the meat quality. In this study, the fatty acid profiles of yak IMF were determined and circRNAs were sequenced. The results showed that the total of polyunsaturated fatty acid (PUFA) content of adult yak muscle was significantly higher than that in yak calves (p < 0.05). A total of 29,021 circRNAs were identified in IMF tissue, notably, 99 differentially expressed (DE) circRNAs were identified, to be associated with fat deposition, the most significant of which were circ_12686, circ_6918, circ_3582, ci_106 and ci_123 (A circRNA composed of exons is labelled 'circRNA' and a circRNA composed of introns is labelled 'ciRNA'). KEGG pathway enrichment analysis showed that the differential circRNAs were enriched in four pathways associated with fat deposition (e.g., the peroxisome proliferator-activated receptor signalling, fatty acid degradation, sphingolipid metabolism and sphingolipid signalling pathways). We also constructed co-expression networks of DE circRNA-miRNA using high-throughput sequencing in IMF deposition, from which revealed that ci_106 target binding of bta-miR-130b, bta-miR-148a, bta-miR-15a, bta-miR-34a, bta-miR-130a, bta-miR-17-5p and ci_123 target binding of bta-miR-150 were involved in adipogenesis. The study revealed the role of the circRNAs in the IMF deposition in yak and its influence on meat quality the findings demonstrated the circRNA differences in the development of IMF with the increase of age, thus providing a theoretical basis for further research on the molecular mechanism of IMF deposition in yaks.

Keywords: Yak; differentially expressed circRNAs; fatty acid; intramuscular fat.