White blood cells and type 2 diabetes: A Mendelian randomization study

PLoS One. 2024 Mar 1;19(3):e0296701. doi: 10.1371/journal.pone.0296701. eCollection 2024.

Abstract

Background: Observational studies have demonstrated an association between white blood cells (WBC) subtypes and type 2 diabetes (T2D) risk. However, it is unknown whether this relationship is causal. We used Mendelian randomization (MR) to investigate the causal effect of WBC subtypes on T2D and glycemic traits.

Methods: The summary data for neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts were extracted from a recent genome-wide association study (n = 173,480). The DIAGRAM and MAGIC consortia offered summary data pertaining to T2D and glycemic characteristics, including fasting glucose (FG) (n = 133,010), glycosylated hemoglobin (HbA1c) (n = 46,368), and homeostatic model assessment-estimated insulin resistance (HOMA-IR) (n = 37,037). A series of MR analyses (univariable MR, multivariable MR, and reverse MR) were used to investigate the causal association of different WBC subtypes with T2D and glycemic traits.

Results: Using the inverse-variance weighted method, we found one standard deviation increases in genetically determined neutrophil [odd ratio (OR): 1.086, 95% confidence interval (CI): 0.877-1.345], lymphocyte [0.878 (0.766-1.006)], monocyte [1.010 (0.906-1.127)], eosinophil [0.995 (0.867-1.142)], and basophil [0.960 (0.763-1.207)] were not causally associated with T2D risk. These findings were consistent with the results of three pleiotropy robust methods (MR-Egger, weighted median, and mode-based estimator) and multivariable MR analyses. Reverse MR analysis provided no evidence for the reverse causation of T2D on WBC subtypes. The null causal effects of WBC subtypes on FG, HbA1c, and HOMA-IR were also identified.

Conclusions: WBCs play no causal role in the development of insulin resistance and T2D. The observed association between these factors may be explained by residual confounding.

MeSH terms

  • Basophils
  • Diabetes Mellitus, Type 2* / complications
  • Genome-Wide Association Study
  • Glucose
  • Glycated Hemoglobin / genetics
  • Humans
  • Insulin Resistance* / genetics
  • Mendelian Randomization Analysis

Substances

  • Glycated Hemoglobin
  • Glucose

Grants and funding

This work was supported by the Science Technology Department of Jilin Province (20230505002ZP, YDZJ202201ZYTS121). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.