Polarized emission of Cs3Cu2I5 nanowires embedded in nanopores of an anodic aluminum oxide template

Opt Lett. 2024 Mar 1;49(5):1349-1352. doi: 10.1364/OL.515767.

Abstract

Due to the intrinsic polarized emission property, polarized emissive materials with anisotropic nanostructures are expected to be potential substitutes for polarizers. Herein, by the template-assisted strategy, well-aligned lead-free metal halide Cs3Cu2I5 nanowire (NW) arrays are fabricated by evaporating the precursor ink in the anodic aluminum oxide (AAO) for polarized emission. The Cs3Cu2I5/AAO composite film emits highly polarized light with a degree of polarization (DOP) of 0.50. Furthermore, by changing the molar ratio of CsI/CuI, the stability of Cs3Cu2I5 precursor inks is improved. Finally, an ultraviolet (UV) light-emitting diode (LED) is adopted to pump the composite film to achieve a blue LED device. The reported Cs3Cu2I5/AAO composite film with highly polarized light emissions will have great potential for polarized emission applications such as liquid crystal display backlights, waveguides, and lasers.