Tuning the structure and physiochemical properties of sodium alginate and chitosan composite films through sodium tripolyphosphate (STPP) crosslinking

Int J Biol Macromol. 2024 Apr;264(Pt 2):130463. doi: 10.1016/j.ijbiomac.2024.130463. Epub 2024 Feb 27.

Abstract

Sodium tripolyphosphate (STPP), an inorganic and non-toxic polyphosphate, has potential applications as a crosslinking agent in the fabrication of edible films. This study utilized STPP in the development of sodium alginate-chitosan composite films, with a focus on their suitability for food packaging applications. The results indicate that the incorporation of STPP led to an increase in film thickness (from 0.048 ± 0.004 to 0.078 ± 0.008 mm), elongation at break (from 11.50 ± 1.49 % to 15.88 ± 2.14 %), water permeation (from 0.364 ± 0.010 to 0.521 ± 0.021 gmm/(m2h*kPa)), and moisture content (from 25.98 ± 0.20 % to 28.12 ± 0.17 %). In contrast, there was a decrease in tensile strength (from 30.23 ± 2.08 to 25.60 ± 1.22 MPa) and swelling index (from 752.9 ± 17.1 to 533.5 ± 8.9 %). Scanning electron microscopy (SEM) analysis revealed the formation of distinctive needle-like microcrystals with the incorporation of STPP. Fourier-transform infrared spectroscopy (FTIR) analysis indicated intermolecular interactions between STPP and the film-forming biopolymers. The data obtained from Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) demonstrated enhanced thermal stability of STPP-loaded films at elevated temperatures. Furthermore, the films exhibited increased DPPH scavenging activity with the addition of STPP. This study underscores the potential of STPP as a crosslinking agent for the development of composite edible films, suggesting applications in the field of food packaging.

Keywords: Biopolymers; Crosslinking; Food packaging; Sodium tripolyphosphate.

MeSH terms

  • Alginates* / chemistry
  • Chitosan* / chemistry
  • Food Packaging
  • Polyphosphates
  • Tensile Strength

Substances

  • Alginates
  • Chitosan
  • triphosphoric acid
  • Polyphosphates