Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review

Ann Biomed Eng. 2024 May;52(5):1184-1194. doi: 10.1007/s10439-024-03479-z. Epub 2024 Feb 28.

Abstract

The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient's condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.

Keywords: 3D printing; Biofilaments; Bone tissue engineering; Polymers; Scaffolds.

Publication types

  • Review

MeSH terms

  • Bone and Bones
  • Humans
  • Polymers
  • Printing, Three-Dimensional
  • Tissue Engineering* / methods
  • Tissue Scaffolds*

Substances

  • Polymers