Pressure-driven dome-shaped superconductivity in topological insulator GeBi2Te4

J Phys Condens Matter. 2024 Mar 7;36(22). doi: 10.1088/1361-648X/ad2e24.

Abstract

The discovery of new superconductors based on topological insulators always captures special attention due to their unique structural and electronic properties. High pressure is an effective way to regulate the lattice as well as electronic states in the topological insulators, thus altering their electronic properties. Herein, we report the structural and electrical transport properties of the topological insulator GeBi2Te4by using high-pressure techniques. The synchrotron x-ray diffraction revealed that GeBi2Te4underwent two structural phase transitions fromR-3m(phase I) toC2/m(phase II) and then intoIm-3m(phase III). Superconductivity was observed at 6.6 GPa to be associated with the first structural phase transition. The superconducting transition temperatureTcreached a maximum value of 8.4 K, accompanied by theRHsign changing from negative to positive at 14.6 GPa, then gradually decreased with increasing pressure in phase III, showing a dome-shaped phase diagram. The present results provide a platform for understanding the interplay between the crystal structure and superconductivity by the regulation of pressure in the topological insulator materials.

Keywords: dome-shaped superconductivity; high-pressure; structural phase transition; topological insulators.